你可以不使用代码库中的排序函数来解决这道题吗?
🙄不是突发奇想,而是最近刷 LeetCode 曾被灵魂拷问过:“你可以不适用代码库中的排序函数来解决这道题吗?”

转念想想,好像让我随手写个快排都有点棘手,时间偷走了我的记忆,那就用文字记录下叭。
话不多说,本文归纳下各类经典的排序算法。
排序算法🎪
👑因为代码中添加了一些有助于理解的注释,且很多算法都很常见,其排序思想就不再赘述了。
直接插入排序
1 2 3 4 5 6 7 8 9 10 11 12 13
   | public static void insertSort(int[] data) {     int length = data.length;     for (int i = 1; i < length; i++) {         int temp = data[i];         if (data[i] - data[i - 1] < 0) {             int j = i - 1;             for (; j >= 0 && data[j] - temp > 0; j--) {                 data[j + 1] = data[j];             }             data[j + 1] = temp;         }     } }
  | 
 
希尔排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
   | public static void ShellSort(int[] data) {     int arrayLength = data.length;     int h = 1;     while (h <= arrayLength / 3) {         h = h * 3 + 1;     }     while (h > 0) {         for (int i = h; i < arrayLength; i++) {             int temp = data[i];             if (data[i] - data[i - h] < 0) {                 int j = i - h;                 for (; j >= 0 && data[j] - temp > 0; j -= h) {                     data[j + h] = data[j];                 }                 data[j + h] = temp;             }         }         h = (h - 1) / 3;     } }
  | 
 
简单选择排序
1 2 3 4 5 6 7 8 9 10 11 12
   | public static void selectSort(int[] data) {     int arrayLength = data.length;     for (int i = 0; i < arrayLength - 1; i++) {         for (int j = i + 1; j < arrayLength; j++) {             if (data[i] - data[j] > 0) {                 int temp = data[i];                 data[i] = data[j];                 data[j] = temp;             }         }     } }
  | 
 
堆排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
   | 
 
  public static void heapSort(int[] data) {     int arrayLength = data.length;          for (int i = 0; i < arrayLength - 1; i++) {                  buildMaxdHeap(data, arrayLength - 1 - i);                  swap(data, 0, arrayLength - 1 - i);     } }
 
  private static void buildMaxdHeap(int[] data, int lastIndex) {          for (int i = (lastIndex - 1) / 2; i >= 0; i--) {                  int k = i;                  while (k * 2 + 1 <= lastIndex) {                          int biggerIndex = 2 * k + 1;                                       if (biggerIndex < lastIndex) {                                  if (data[biggerIndex] - data[biggerIndex + 1] < 0) {                                          biggerIndex++;                 }             }                          if (data[k] - data[biggerIndex] < 0) {                                  swap(data, k, biggerIndex);                                                   k = biggerIndex;             } else {                 break;             }         }     } }
 
  private static void swap(int[] data, int i, int j) {     int temp = data[i];     data[i] = data[j];     data[j] = temp; }
 
  | 
 
冒泡排序
1 2 3 4 5 6 7 8 9 10 11
   | public static void bubbleSort(int[] arr) {     for (int i = 0; i < arr.length - 1; i++) {         for (int j = 0; j < arr.length - 1 - i; j++) {             if (arr[j] > arr[j + 1]) {                 int temp = arr[j];                 arr[j] = arr[j + 1];                 arr[j + 1] = temp;             }         }     } }
  | 
 
归并排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
   | 
 
  public static void mergeSort(int[] data) {     sort(data, 0, data.length - 1); }
 
  private static void sort(int[] data, int left, int right) {     if (left < right) {                  int center = (left + right) / 2;         sort(data, left, center);         sort(data, center + 1, right);                  merge(data, left, center, right);     } }
 
  private static void merge(int[] data, int left, int center, int right) {     int[] tempArr = new int[data.length];     int mid = center + 1;     int third = left;     int temp = left;     while (left <= center && mid <= right) {         if (data[left] - data[mid] <= 0) {             tempArr[third++] = data[left++];         } else {             tempArr[third++] = data[mid++];         }     }     while (mid <= right) {         tempArr[third++] = data[mid++];     }     while (left <= center) {         tempArr[third++] = data[left++];     }     while (temp <= right) {         data[temp] = tempArr[temp++];     } }
 
  | 
 
基数排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
   | public static void radixSort(int[] data, int radix, int d) {     int arrayLength = data.length;     int[] temp = new int[arrayLength];     int[] buckets = new int[radix];     for (int i = 0, rate = 1; i < d; i++) {                  Arrays.fill(buckets, 0);                  System.arraycopy(data, 0, temp, 0, arrayLength);         for (int j = 0; j < arrayLength; j++) {             int subKey = (temp[j] / rate) % radix;             buckets[subKey]++;         }         for (int j = 1; j < radix; j++) {             buckets[j] = buckets[j] + buckets[j - 1];         }         for (int m = arrayLength - 1; m >= 0; m--) {             int subKey = (temp[m] / rate) % radix;             data[--buckets[subKey]] = temp[m];         }         rate *= radix;     } }
  | 
 
桶排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
   | public static void BucketSort(int[] data, int min, int max) {     int arrayLength = data.length;     int[] temp = new int[arrayLength];     int[] buckets = new int[max - min];          for (int i = 0; i < arrayLength; i++) {         buckets[data[i] - min]++;     }          for (int i = 1; i < max - min; i++) {         buckets[i] = buckets[i] + buckets[i - 1];     }          System.arraycopy(data, 0, temp, 0, arrayLength);     for (int k = arrayLength - 1; k >= 0; k--) {         data[--buckets[temp[k] - min]] = temp[k];     } }
  | 
 
快速排序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
   | 
 
  public static void quickSort(int[] data) {     subSort(data, 0, data.length - 1); }
  private static void subSort(int[] data, int start, int end) {     if (start < end) {         int base = data[start];         int low = start;         int high = end + 1;         while (true) {             while (low < end && data[++low] - base <= 0)                 ;             while (high > start && data[--high] - base >= 0)                 ;             if (low < high) {                 swap(data, low, high);             } else {                 break;             }         }         swap(data, start, high);
          subSort(data, start, high - 1);         subSort(data, high + 1, end);     } }
  private static void swap(int[] data, int i, int j) {     int temp = data[i];     data[i] = data[j];     data[j] = temp; }
 
  | 
 
复杂度一览表🍦
图片源于菜鸟教程


😁对于算法的详细分析请参考:十大排序算法
何时调用库函数🔮
不仅是本题的排序算法,LeetCode 中有许多可以调用库函数的地方,那么究竟何时该调用何时别调用呢?
举个栗子:151.翻转字符串里的单词,这题本身是综合考察对字符串的处理能力,如果直接调用 split 和 reverse 库函数,那么这道题就失去了它存在的意义。
🚫所以如果题目关键代码可以直接调用库函数解决,建议不要使用库函数,毕竟面试官不是考察你对库函数的熟悉程度。
🔍如果库函数仅是解题过程中的一小部分,并且你已经很清楚这个库函数内部的实现原理的话,可以考虑调用库函数,节省时间。
本着提高代码水平的原则,我想你就会很清楚什么时候该调什么时候不该调了,只有才会有助于对算法的理解。
🌈注意:并非所有语言都像 Python 和 Java 有着丰富的库函数,C、C++ 等语言偏底层,这类所谓的库函数也许得自己手写。